3.508 \(\int (a+b \cos (c+d x))^{7/2} \, dx\)

Optimal. Leaf size=246 \[ \frac{2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{105 d}-\frac{2 \left (-46 a^2 b^2+71 a^4-25 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{a+b \cos (c+d x)}}+\frac{32 a \left (11 a^2+13 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}+\frac{24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{35 d} \]

[Out]

(32*a*(11*a^2 + 13*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(105*d*Sqrt[(a + b*Cos
[c + d*x])/(a + b)]) - (2*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x
)/2, (2*b)/(a + b)])/(105*d*Sqrt[a + b*Cos[c + d*x]]) + (2*b*(71*a^2 + 25*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c
+ d*x])/(105*d) + (24*a*b*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(35*d) + (2*b*(a + b*Cos[c + d*x])^(5/2)*Si
n[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.374696, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {2656, 2753, 2752, 2663, 2661, 2655, 2653} \[ \frac{2 b \left (71 a^2+25 b^2\right ) \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{105 d}-\frac{2 \left (-46 a^2 b^2+71 a^4-25 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{a+b \cos (c+d x)}}+\frac{32 a \left (11 a^2+13 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 b \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 d}+\frac{24 a b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{35 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(7/2),x]

[Out]

(32*a*(11*a^2 + 13*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(105*d*Sqrt[(a + b*Cos
[c + d*x])/(a + b)]) - (2*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x
)/2, (2*b)/(a + b)])/(105*d*Sqrt[a + b*Cos[c + d*x]]) + (2*b*(71*a^2 + 25*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c
+ d*x])/(105*d) + (24*a*b*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(35*d) + (2*b*(a + b*Cos[c + d*x])^(5/2)*Si
n[c + d*x])/(7*d)

Rule 2656

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n -
1))/(d*n), x] + Dist[1/n, Int[(a + b*Sin[c + d*x])^(n - 2)*Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c + d*
x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^{7/2} \, dx &=\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac{2}{7} \int (a+b \cos (c+d x))^{3/2} \left (\frac{1}{2} \left (7 a^2+5 b^2\right )+6 a b \cos (c+d x)\right ) \, dx\\ &=\frac{24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac{4}{35} \int \sqrt{a+b \cos (c+d x)} \left (\frac{1}{4} a \left (35 a^2+61 b^2\right )+\frac{1}{4} b \left (71 a^2+25 b^2\right ) \cos (c+d x)\right ) \, dx\\ &=\frac{2 b \left (71 a^2+25 b^2\right ) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac{24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac{8}{105} \int \frac{\frac{1}{8} \left (105 a^4+254 a^2 b^2+25 b^4\right )+2 a b \left (11 a^2+13 b^2\right ) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 b \left (71 a^2+25 b^2\right ) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac{24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac{1}{105} \left (16 a \left (11 a^2+13 b^2\right )\right ) \int \sqrt{a+b \cos (c+d x)} \, dx+\frac{1}{105} \left (-71 a^4+46 a^2 b^2+25 b^4\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 b \left (71 a^2+25 b^2\right ) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac{24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac{\left (16 a \left (11 a^2+13 b^2\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{105 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (\left (-71 a^4+46 a^2 b^2+25 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{105 \sqrt{a+b \cos (c+d x)}}\\ &=\frac{32 a \left (11 a^2+13 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{2 \left (71 a^4-46 a^2 b^2-25 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{105 d \sqrt{a+b \cos (c+d x)}}+\frac{2 b \left (71 a^2+25 b^2\right ) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{105 d}+\frac{24 a b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac{2 b (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [A]  time = 1.08187, size = 211, normalized size = 0.86 \[ \frac{b \sin (c+d x) \left (b \left (752 a^2+145 b^2\right ) \cos (c+d x)+488 a^3+162 a b^2 \cos (2 (c+d x))+262 a b^2+15 b^3 \cos (3 (c+d x))\right )-4 \left (-46 a^2 b^2+71 a^4-25 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+64 a \left (11 a^2 b+11 a^3+13 a b^2+13 b^3\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{210 d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(7/2),x]

[Out]

(64*a*(11*a^3 + 11*a^2*b + 13*a*b^2 + 13*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/
(a + b)] - 4*(71*a^4 - 46*a^2*b^2 - 25*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a
 + b)] + b*(488*a^3 + 262*a*b^2 + b*(752*a^2 + 145*b^2)*Cos[c + d*x] + 162*a*b^2*Cos[2*(c + d*x)] + 15*b^3*Cos
[3*(c + d*x)])*Sin[c + d*x])/(210*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 3.351, size = 824, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(7/2),x)

[Out]

-2/105*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/2*d*x+1/2*c)^9*b^4+648*cos(1/2*d
*x+1/2*c)^7*a*b^3-600*cos(1/2*d*x+1/2*c)^7*b^4+752*cos(1/2*d*x+1/2*c)^5*a^2*b^2-1296*cos(1/2*d*x+1/2*c)^5*a*b^
3+640*cos(1/2*d*x+1/2*c)^5*b^4+244*cos(1/2*d*x+1/2*c)^3*a^3*b-1128*cos(1/2*d*x+1/2*c)^3*a^2*b^2+860*cos(1/2*d*
x+1/2*c)^3*a*b^3-360*cos(1/2*d*x+1/2*c)^3*b^4-71*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/
(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+46*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/
2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+25*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^4+
176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2
*b/(a-b))^(1/2))*a^4-176*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(c
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b+208*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(
a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2-208*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*co
s(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3-244*cos(1/2*d*x+1/
2*c)*a^3*b+376*cos(1/2*d*x+1/2*c)*a^2*b^2-212*cos(1/2*d*x+1/2*c)*a*b^3+80*cos(1/2*d*x+1/2*c)*b^4)/(-2*b*sin(1/
2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}\right )} \sqrt{b \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)*sqrt(b*cos(d*x + c) + a),
x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

Timed out